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Basic equations  2, 12-15 

Three main equations are the basis for the following hemodynamic calculations: 

(a) The flow equation states that the flow is the product of the cross section area (CSA) and 

average velocity of the blood cells passing through that CSA. 
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Flow 

Flow = CSA x Velocity 

Since volume is the product of flow and time, the above equation can be rewritten: 

 

Volume = CSA x Velocity x Time 

 

Velocity x Time is the velocity time integral (VTI) that is automatically given by all the common 

echo machines by tracing the profile of a PW or CW Doppler signal (figures 1 and 2). To assess a 

volume passing through an orifice at any beat, we therefore must apply the equation: 

 



Volume (cm3) = CSA (cm2) x VTI (cm)  (1) 

(b) The Bernoulli equation, in its complete structure, determines the value of a pressure gradient 

for a flow passing through a restricted orifice. It can be semplified in the following equation: 

 

∆P = ½ ρ (Vb
2-Va

2)  

 

where     ρ is the mass density of blood (1.06 x 103kg/m3) 

  Vb is the velocity at point b (distal to the restriction) 

  Va is the velocity at point a (proximal to the restriction) 

Since Va is very low, it can be skipped, and therefore the final equation that is commonly applied is 

 

∆P = 4 x V2  (2) 

(c) The continuity equation is the Gorlin formula of echocardiography and is applied to calculate 

the area of a stenotic or regurgitant valve. Basically, it states the “conservation of flow” regardless 

of the CSA that is met by the flow itself: 

 

Flow (Q) = CSA x Velocity 
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Q 1 = Q 2 

Q 1 = CSA 1 x V 1 = CSA 2 x V 2   (3) 
V



CSA 2 = Q 1/ V2 

 

  

Stroke volume and cardiac output 2, 16-23 

To determine the stroke volume the equation  (1) is applied. The most important technical factor to 

ensure a correct  value of stroke volume will be to properly match the site of sample volume with 

the anatomic measure of CSA. It requires the assessment of the aortic flow VTI and of the CSA. It 

is assessed with the following steps: 

1. Research of the best parallel orientation with the blood flow at the bidimensional (2D) echo 

examination. This is usually obtained using the transgastric views (long axis transgastric view at 

90° with lateralization of the tip of the probe, or deep transgastric view at 0°). 

2. PW Doppler signal tracing by placing the sampling volume at the left ventricle outflow tract 

(LVOT) level, about 5 mm proximal to the aortic valve; VTI determination by tracing the outer 

edge of the dense envelope of the spectral recording (figure 1). 

3. CSA determination (figure 3): when using the PW Doppler for VTI determination, the LVOT 

area is to be considered. It can be assessed by the 2D examination, using the mid-oesophageal long-

axis view at 120° , and by calculating the LVOT diameter. Trace the measurement line at the level 

of the aortic annulus during systole. From this diameter, and by assuming a circular section, the 

CSA is determined by the following equation: 

CSA = D2 x 0.785  (4) 

4. Calculate the SV (CSA x VTI) and CO (SV x heart rate) 

Whatever method is applied to assess the SV, the main question remains: is a TEE-based SV and 

cardiac output determination reliable? Of course, the theoretical calculations at the basis of all the 

equations applied are sound, but the main problem remains that both 2D and Doppler 

determinations are strongly operator-dependent. To this respect, the ability of the operator to limit 

the potential sources of error (non-parallel flow determination; incorrect border determination of 



the Doppler signal; excessive approximation in CSA determination...) is of paramount importance, 

and limits the applicability of echo-derived SV measurements. Particular attention should be posed 

on the VTI measurement: it must be considered that under mechanical ventilation there is a 

considerable beat-to-beat variation of the stroke volume, that is reflected by different VTIs. In synus 

rhythm, at least three VTIs should be calculated and the mean should be used for SV assessment; in 

atrial fibrillation, at least 5-7 beats should be mediated. Nevertheless, TEE may be useful as a 

“trend monitor” of SV and cardiac output during cardiac and non-cardiac operations. Given that 

the CSA is relatively stable in the same patient, the VTI serial changes in time accurately reflect 

equivalent SV changes. When using a serial monitoring of VTI, the best way is to use the CW 

Doppler of the aortic flow, that appears to have less variability than the equivalent PW Doppler. 

 

Pressures and  gradients 

The pressure gradients across a stenotic structure are assessed by the modified Bernoulli equation 

(2). A CW Doppler signal is commonly applied when exploring aortic stenotic lesions, while the 

mitral valve can be explored with a PW Doppler signal too. 

All the commonly available echo machines automatically calculate the pressure gradients from the 

Doppler signal waveform. To obtain the mean pressure gradient it is needed a complete tracing of 

the waveform profile, while the peak gradient assessment only requires to settle the velocity peak. 

Transaortic pressure gradients calculations need a Doppler signal parallel to the transaortic flow; 

this is achievable in the transgastric views as shown in figure 2. Transmitral pressure gradients 

calculations can be obtained in the standard four chamber view (figure 5). Gradients across the 

pulmonary valve are more difficult to be obtained due to a difficult parallelism of the Doppler 

signal with transpulmonary flow. This can be obtained, in expert hands, by a 2D transgastric view 

or using an upper oesophageal 90° view. 

 



Since the calculation of pressure gradients relies on the quadratic expression of velocity, little 

errors in determining this last parameter are amplified. It is therefore very important to find the 

best parallelism between Doppler signal and  blood flow. 

Once obtained this, the measure is reliable unless (1) the velocity proximal to the stenosis exceeds 

1.5 m/s; (2) there are two stenotic lesions in the blood flow path (subaortic stenosis + aortic valve 

stenosis); and (3) the stenotic lesion is very long, tunnel-like. 

 

Intracardiac pressures may be calculated with TOE providing that one or more cardiac valves are 

regurgitant. By measuring the peak velocity of the regurgitant flow, a pressure gradient can be 

established. The pressure gradient plus the pressure in the chamber receiving the regurgitant flow is 

the pressure inside the chamber driving the regurgitant flow: 

 

Driving Pressure = Pressure Gradient + Pressure distal to the regurgitant flow 

 

Many pressures can be calculated depending on the presence of regurgitant flows and septal defects. 

The most commonly measured pressures are: 

(a) Systolic pulmonary artery pressure (sPAP) 24-29  

Requires a tricuspid valve regurgitation (figure 6). The peak velocity and the resulting pressure 

gradient are determined usually using a CW Doppler signal. The pressure distal to the regurgitant 

flow is the RAP. The equation is: 

 

sPAP = Peak Pressure Gradient + RAP 

 

This equation is true in absence of a pulmonary valve stenosis, assuming that the systolic right 

ventricular pressure is equal to the sPAP. 

(b) Left atrial pressure (LAP) 30 



Requires a mitral valve regurgitation. The peak velocity and the resulting pressure gradient are 

determined usually using a CW Doppler signal: consider that the mitral regurgitation flow is often 

characterized by a very high peak velocity. The driving pressure is the systolic systemic arterial 

pressure (sSAP). The equation is: 

 

LAP = sSAP – Peak Pressure Gradient 

 

This equation is true in absence of an aortic valve stenosis, assuming that the systolic ventricular 

pressure is equal to the sSAP.The TOE assessment of the LAP is critical: the driving pressure is 

very high, and a litlle error in its determination leads to an unacceptable error in LAP 

measurement, moreover if we consider that this value has many clinically relevant meanings. 

(c) Left Ventricle End Diastolic Pressure (LVEDP) 30. 

Requires an aortic valve regurgitation. The end diastolic pressure gradient is assessed using a CW 

Doppler signal (figure 7). The driving pressure is the diastolic systemic arterial pressure 

(dSAP).The equation is: 

 

LVEDP = dSAP – End Diastolic Pressure Gradient 

 

 

Preload and fluid responsiveness assessment 

The preload, expression of myocardial fiber  stretch at the end of diastole,  is represented by the LV 

volume and indirectly by the pressure required  to fill the LV, and has a direct effect on cardiac 

performance. The achievement of an adequate pre-load to optimize cardiac performance remains a 

primary target in the immediate postoperative treatment of cardiac surgery patients. In clinical 

practice the measure of ventricular end-diastolic pressure  can be assessed using left atrial  pressure 

and pulmonary artery occlusion pressure (PAOP), but the relative invasiveness of the procedure and 



the limitations of the interpretation have questioned  their utility. Echocardiography and Doppler 

application   allow in a non invasive manner to estimate a reliable LAP pressure and LV end-

diastole pressure integrating volume and pressure information. 

TOE allows for the bidimensional visualization on LV cavity helping to quantify  with a strong 

correlation the LV volumes. The assessment of LV filling is routinely evaluated from transgastric 

short-axis view at papillary muscles because the volume variations are more evident in this plane 

than in long axis cut. The end-diastolic area (figure 10) at the transgastric short axis view has 

proved to be a more sensitive index of LV filling than PAOP during abdominal aortic 

aneurismectomy. An end-diastolic area ≤ 5 cm2 body surface area  is accepted as cut-off of a 

hypovolemic state accepted for hyperdynamic conditions where a hypercontactility is associated to 

normovolemia. 

The use of mitral flow patterns as surrogate of left ventricular pressure has some limitations 

depending by the influence of loading conditions and  ventricular compliance. 
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Factors that influences Left Ventricular compliance
• Myocardial ischemia 
• Restrictive cardiomyopathy 
• Right-to-left interventricular septal shift 
• Aortic stenosis 
• Cardiac tamponade 
• Myocardial fibrosis 
• Inotropic-drug use 
• Hypertension 
LV end-diastolic pressure can be estimated looking at the deceleration time (DCT) of the 

tolic filling  of mitral inflow  using pulsed-wave Doppler. The sample volume (2 mm 

ust be placed at the tips of mitral leaflets and the DCT must be measured on the early 

 wave, extrapolating  the descending slope to the baseline. This method correlates with 

y capillary wedge pressure (PCWP) in those patients with an ejection fraction less than 35 

orter is DCT the higher is the PCWP. A DCT≥150 ms has a sensitivity of 93% and a 

 of 100 for predicting a PCWP ≤10 mmHg 54-75. 



Pulmonary venous flow and especially the systolic-diastolic ratio strongly correlate with mean left 

atrial pressure, but this correlation depends on the ventricular function and cardiac output. 

Pulmonary venous flow is examined placing the sample volume at least 1 cm into the pulmonary 

vein. Colour flow can often help to locate the ostium of the pulmonary veins. The typical  

pulmonary vein flow is comprised of systolic (S), diastolic (D)  and atrial reversal wave (rA) (figure 

11). The S/D ratio and the velocity and duration of rA reflect ventricular compliance and ventricular 

filling pressure In the patients with preserved ventricular function the correlation is positive so that 

a high atrial pressure is represented by a high systolic wave. Conversely, whenever the contractility 

is depressed, a high atrial pressure is represented by a decreased systolic wave 76-83. 

 

 

The developments of new modalities as M-mode color echocardiography and tissue Doppler 

imaging (DTI) have added other criteria of preload evaluation and their combination with classical 

transmitral flow indices allow to estimate atrial pressure. 

The flow velocity from mitral inflow area  towards apex (from mitral valve plane to 4 cm distally 

into the LV cavity) can be  measured placing an M-mode cursor in the center of brightest colour 

inflow from the transoesophageal four chamber view .The information obtained by color M-mode is 

similar to the data obtained positioning simultaneously more samples volume at different levels 

from mitral annulus  to the apex of the LV.  When the mitral valve opens a first flow propagates 

from left atrium to left ventricle corresponding to the early filling (E wave in PW study of  mitral 

valve) followed by a second flow depending on the atrial kick (A wave). Flow at mitral valve 

occurs earlier  than at apical level. The time delay between mitral annulus and apex can be 

represented by the slope of the color wavefront.    Adjusting the colour Doppler setting to produce 

color aliasing , the slope of the first color alias or of the color-non color interface (black-to-red 

transition zone) during the early filling, represents the propagation  flow velocity (Vp) of the blood 

flowing towards the apex. Young health subjects typically have a Vp ≥ 55cm/sec.Older patients , 



those with left ventricular hypertrophy  and/or  advanced diastolic dysfunction have a lower Vp. 

The flow velocity propagation (Vp) has been shown to be correlated  inversely  with the time 

constant of LV isovolumic relaxation (τ) and to be relatively preload independent. The ratio E 

between inflow  velocity  and flow propagation velocity relates linearly  to the mean left atrial 

pressure 84-95 

The DTI is a new technique that records the systolic and diastolic velocitie within myocardium and 

at the corners of mitral annulus positioning 96-100 . Doppler signal arising from tissue motion differs 

from blood motion by  two main aspects: 1) tissue velocities are lower (20 cm/sec) than the  red 

cells ones (20-100 cm/sec) 2) the amplitude of the signal arising from cardiac structures 

(myocardium, mitral and tricuspidal annulus) is significantly higher ( approx. 100 times greater than 

blood cells). Conventional blood flow Doppler uses high pass filter to remove low velocities due to 

wall motion: by rearranging the filter and the amplification (both gains and filter must be set low) 

the Doppler signal reflected by the cardiac tissue can be displayed. The sample volume (5 mm) 

must be placed within the myocardium or at the mitral annulus (lateral or septal in four chambers 

section)  and a spectral recording of velocities  is reproduced.  

The spectral longitudinal velocity of myocardium is represented by a systolic deflection (negative  

deflection)  and two diastolic deflections (positive deflections), representing the early filling (Em) 

and atrial flow (Am). The early diastolic wave at mitral annulus show a reduction with  age and has 

been demonstrated to be an index of LV relaxation that is relatively insensitive to left atrial 

pressure. 

The ratio of transmitral E velocity to Em has been recently demonstrated to relate well with mean 

left atrial (or pulmonary capillary wedge) pressure in multiple clinical scenarios, such as depressed 

or normal systolic LV function, hypertrophic cardiomyopathy, sinus tachycardia, and atrial 

fibrillation. 

The echo Doppler  can be applied in the assessment of hemodynamic instability and hypotension 

caused by a reduction of biventricular preload (i.e. hemorrhage or pathologic fluid shifts) predicting  



the hemodynamic response to fluid loading with the estimation of the left ventricular stroke volume 

variation on the basis of the specific interactions of the heart and the lungs under mechanical 

ventilation. It is known that under these conditions, a SV variation is induced by the effects of 

intrathoracic intermittent positive pressure on venous blood flow 101-106. These variations are more 

evident in patients with a reduced pre-load (“fluid responders”). The SV variation may be 

appreciated with a CW Doppler study of the aortic flow, and can be expressed in terms of aortic 

blood flow velocity variation. To measure this effect, more than one respiratory cycle should be 

investigated: the velocity of recording should therefore be decreased in order to have many aortic 

flow profiles in the same screen (figure 12). The maximal and minimal velocities should be 

measured to aortic blood velocity variation: the difference between the two values divided by the 

mean value is the % variation. A value of about 12% has been demonstrated as a good cut-off for 

fluid responsiveness. 

Doppler analysis of the transmitral flow has been used as an index of fluid responsiveness. The ratio 

between the E and A waves VTIs is an indicator of  fluid responsiveness (figure 13): the lower it is, 

the more likely the patient will benefit from a fluid expansion, with a good cut-off settled  

at 1.26 107. 
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